Viability Reduction and Rac1 Gene Downregulation of Heterogeneous Ex-Vivo Glioma Acute Slice Infected by the Oncolytic Newcastle Disease Virus Strain V4UPM

نویسندگان

  • Zulkifli Mustafa
  • Hilda Shazana Shamsuddin
  • Aini Ideris
  • Rohaya Ibrahim
  • Hasnan Jaafar
  • Abdul Manaf Ali
  • Jafri Malin Abdullah
چکیده

Oncolytic viruses have been extensively evaluated for anticancer therapy because this virus preferentially infects cancer cells without interfering with normal cells. Newcastle Disease Virus (NDV) is an avian virus and one of the intensively studied oncolytic viruses affecting many types of cancer including glioma. Nevertheless, the capability of NDV infection on heterogeneous glioma tissue in a cerebrospinal fluid atmosphere has never been reported. Recently, Rac1 is reported to be required for efficient NDV replication in human cancer cells and established a link between tumourigenesis and sensitivity to NDV. Rac1 is a member of the Rho GTPases involved in the regulation of the cell migration and cell-cycle progression. Rac1 knockdown leads to significant inhibition of viral replication. In this work, we demonstrated that NDV treatment led to significant reduction of tumour tissue viability of freshly isolated heterogeneous human brain tumour slice, known as an ex vivo glioma acute slice (EGAS). Analysis of gene expression indicated that reduced tissue viability was associated with downregulation of Rac1. However, the viability reduction was not persistent. We conclude that NDV treatment induced EGAS viability suppression, but subsequent downregulation of Rac1 gene may reduce the NDV replication and lead to regrowth of EGAS tissue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Newcastle Disease Virus Interaction in Targeted Therapy against Proliferation and Invasion Pathways of Glioblastoma Multiforme

Glioblastoma multiforme (GBM), or grade IV glioma, is one of the most lethal forms of human brain cancer. Current bioscience has begun to depict more clearly the signalling pathways that are responsible for high-grade glioma initiation, migration, and invasion, opening the door for molecular-based targeted therapy. As such, the application of viruses such as Newcastle disease virus (NDV) as a n...

متن کامل

Construction of Recombinant Bacmid DNA Encoding Newcastle Disease Virus (NDV) Fusion Protein Gene

Background and Aims: Newcastle disease virus (NDV) is one of the major pathogen in poultry. Vaccination is intended to control the disease as an effective solution nevertheless this virus is a growing threat to the poultry industry. F gene open reading frame (ORF) from NDV is 1650 bp, encoding a protein of 553 amino acids that can induce protective immunity alone. The F glycoprotein on the surf...

متن کامل

Differentiation of Virulent and Non-Virulent Newcastle Disease Virus Isolates Using RT-PCR

Newcastle disease is one of the main concerns of poultry farmers. Detection of virulent strains of Newcastle disease virus (NDV) has a great impact on control measures against the disease. In this study RT-PCR was optimized in high sensitivity in order to differentiate the virulent from non-virulent NDV isolates directly in tissue homogenates. The vaccinal NDV strain and known field isolates we...

متن کامل

Molecular Detection of Lentogenic Strain of Newcastle Disease Virus in Commercial Broiler Chickens Using Sentinel Birds in Iran: The First Report

Abstract Background and Aims: Newcastle disease (ND) is a highly contagious disease that affects many species of birds and causes significant economic losses to the poultry industry worldwide and the pathogenicity of Newcastle disease virus (NDV) strains varies with different virulence. We aim to detect lentogenic (low virulence) ND virus (ND/IR 2010) using sentinel birds and molecular det...

متن کامل

Developing oncolytic Herpes simplex virus type 1 through UL39 knockout by CRISPR-Cas9

Objective(s): Oncolytic Herpes simplex virus type 1 (HSV-1) has emerged as a promising strategy for cancer therapy. However, development of novel oncolytic mutants has remained a major challenge owing to low efficiency of conventional genome editing methods. Recently, CRISPR-Cas9 has revolutionized genome editing.Materials and Methods: I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013